\(\int \frac {\sin ^5(c+d x)}{\sqrt {a+b \sin ^4(c+d x)}} \, dx\) [241]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 484 \[ \int \frac {\sin ^5(c+d x)}{\sqrt {a+b \sin ^4(c+d x)}} \, dx=-\frac {\cos (c+d x) \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}{3 b d}+\frac {2 \cos (c+d x) \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}{3 \sqrt {b} \sqrt {a+b} d \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right )}-\frac {2 (a+b)^{3/4} \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right ) \sqrt {\frac {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}{(a+b) \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt [4]{a+b}}\right )|\frac {1}{2} \left (1+\frac {\sqrt {b}}{\sqrt {a+b}}\right )\right )}{3 b^{3/4} d \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}+\frac {\sqrt [4]{a+b} \left (a-2 b+2 \sqrt {b} \sqrt {a+b}\right ) \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right ) \sqrt {\frac {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}{(a+b) \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt [4]{a+b}}\right ),\frac {1}{2} \left (1+\frac {\sqrt {b}}{\sqrt {a+b}}\right )\right )}{6 b^{5/4} d \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}} \]

[Out]

-1/3*cos(d*x+c)*(a+b-2*b*cos(d*x+c)^2+b*cos(d*x+c)^4)^(1/2)/b/d+2/3*cos(d*x+c)*(a+b-2*b*cos(d*x+c)^2+b*cos(d*x
+c)^4)^(1/2)/d/b^(1/2)/(1+cos(d*x+c)^2*b^(1/2)/(a+b)^(1/2))/(a+b)^(1/2)-2/3*(a+b)^(3/4)*(cos(2*arctan(b^(1/4)*
cos(d*x+c)/(a+b)^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*cos(d*x+c)/(a+b)^(1/4)))*EllipticE(sin(2*arctan(b^(1/4)
*cos(d*x+c)/(a+b)^(1/4))),1/2*(2+2*b^(1/2)/(a+b)^(1/2))^(1/2))*(1+cos(d*x+c)^2*b^(1/2)/(a+b)^(1/2))*((a+b-2*b*
cos(d*x+c)^2+b*cos(d*x+c)^4)/(a+b)/(1+cos(d*x+c)^2*b^(1/2)/(a+b)^(1/2))^2)^(1/2)/b^(3/4)/d/(a+b-2*b*cos(d*x+c)
^2+b*cos(d*x+c)^4)^(1/2)+1/6*(a+b)^(1/4)*(cos(2*arctan(b^(1/4)*cos(d*x+c)/(a+b)^(1/4)))^2)^(1/2)/cos(2*arctan(
b^(1/4)*cos(d*x+c)/(a+b)^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*cos(d*x+c)/(a+b)^(1/4))),1/2*(2+2*b^(1/2)/(a+b
)^(1/2))^(1/2))*(1+cos(d*x+c)^2*b^(1/2)/(a+b)^(1/2))*(a-2*b+2*b^(1/2)*(a+b)^(1/2))*((a+b-2*b*cos(d*x+c)^2+b*co
s(d*x+c)^4)/(a+b)/(1+cos(d*x+c)^2*b^(1/2)/(a+b)^(1/2))^2)^(1/2)/b^(5/4)/d/(a+b-2*b*cos(d*x+c)^2+b*cos(d*x+c)^4
)^(1/2)

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 484, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3294, 1220, 1211, 1117, 1209} \[ \int \frac {\sin ^5(c+d x)}{\sqrt {a+b \sin ^4(c+d x)}} \, dx=\frac {\sqrt [4]{a+b} \left (2 \sqrt {b} \sqrt {a+b}+a-2 b\right ) \left (\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}+1\right ) \sqrt {\frac {a+b \cos ^4(c+d x)-2 b \cos ^2(c+d x)+b}{(a+b) \left (\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt [4]{a+b}}\right ),\frac {1}{2} \left (\frac {\sqrt {b}}{\sqrt {a+b}}+1\right )\right )}{6 b^{5/4} d \sqrt {a+b \cos ^4(c+d x)-2 b \cos ^2(c+d x)+b}}-\frac {2 (a+b)^{3/4} \left (\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}+1\right ) \sqrt {\frac {a+b \cos ^4(c+d x)-2 b \cos ^2(c+d x)+b}{(a+b) \left (\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}+1\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt [4]{a+b}}\right )|\frac {1}{2} \left (\frac {\sqrt {b}}{\sqrt {a+b}}+1\right )\right )}{3 b^{3/4} d \sqrt {a+b \cos ^4(c+d x)-2 b \cos ^2(c+d x)+b}}-\frac {\cos (c+d x) \sqrt {a+b \cos ^4(c+d x)-2 b \cos ^2(c+d x)+b}}{3 b d}+\frac {2 \cos (c+d x) \sqrt {a+b \cos ^4(c+d x)-2 b \cos ^2(c+d x)+b}}{3 \sqrt {b} d \sqrt {a+b} \left (\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}+1\right )} \]

[In]

Int[Sin[c + d*x]^5/Sqrt[a + b*Sin[c + d*x]^4],x]

[Out]

-1/3*(Cos[c + d*x]*Sqrt[a + b - 2*b*Cos[c + d*x]^2 + b*Cos[c + d*x]^4])/(b*d) + (2*Cos[c + d*x]*Sqrt[a + b - 2
*b*Cos[c + d*x]^2 + b*Cos[c + d*x]^4])/(3*Sqrt[b]*Sqrt[a + b]*d*(1 + (Sqrt[b]*Cos[c + d*x]^2)/Sqrt[a + b])) -
(2*(a + b)^(3/4)*(1 + (Sqrt[b]*Cos[c + d*x]^2)/Sqrt[a + b])*Sqrt[(a + b - 2*b*Cos[c + d*x]^2 + b*Cos[c + d*x]^
4)/((a + b)*(1 + (Sqrt[b]*Cos[c + d*x]^2)/Sqrt[a + b])^2)]*EllipticE[2*ArcTan[(b^(1/4)*Cos[c + d*x])/(a + b)^(
1/4)], (1 + Sqrt[b]/Sqrt[a + b])/2])/(3*b^(3/4)*d*Sqrt[a + b - 2*b*Cos[c + d*x]^2 + b*Cos[c + d*x]^4]) + ((a +
 b)^(1/4)*(a - 2*b + 2*Sqrt[b]*Sqrt[a + b])*(1 + (Sqrt[b]*Cos[c + d*x]^2)/Sqrt[a + b])*Sqrt[(a + b - 2*b*Cos[c
 + d*x]^2 + b*Cos[c + d*x]^4)/((a + b)*(1 + (Sqrt[b]*Cos[c + d*x]^2)/Sqrt[a + b])^2)]*EllipticF[2*ArcTan[(b^(1
/4)*Cos[c + d*x])/(a + b)^(1/4)], (1 + Sqrt[b]/Sqrt[a + b])/2])/(6*b^(5/4)*d*Sqrt[a + b - 2*b*Cos[c + d*x]^2 +
 b*Cos[c + d*x]^4])

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1211

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1220

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e^q*x^(2*q - 3)*((
a + b*x^2 + c*x^4)^(p + 1)/(c*(4*p + 2*q + 1))), x] + Dist[1/(c*(4*p + 2*q + 1)), Int[(a + b*x^2 + c*x^4)^p*Ex
pandToSum[c*(4*p + 2*q + 1)*(d + e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - b*(2*p + 2*q - 1)*e^q*x^(2*q - 2) -
c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && IGtQ[q, 1]

Rule 3294

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, Dist[-ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^4
)^p, x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {Subst}\left (\int \frac {\left (1-x^2\right )^2}{\sqrt {a+b-2 b x^2+b x^4}} \, dx,x,\cos (c+d x)\right )}{d} \\ & = -\frac {\cos (c+d x) \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}{3 b d}-\frac {\text {Subst}\left (\int \frac {-a+2 b-2 b x^2}{\sqrt {a+b-2 b x^2+b x^4}} \, dx,x,\cos (c+d x)\right )}{3 b d} \\ & = -\frac {\cos (c+d x) \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}{3 b d}-\frac {\left (2 \sqrt {a+b}\right ) \text {Subst}\left (\int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a+b}}}{\sqrt {a+b-2 b x^2+b x^4}} \, dx,x,\cos (c+d x)\right )}{3 \sqrt {b} d}+\frac {\left (a-2 b+2 \sqrt {b} \sqrt {a+b}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b-2 b x^2+b x^4}} \, dx,x,\cos (c+d x)\right )}{3 b d} \\ & = -\frac {\cos (c+d x) \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}{3 b d}+\frac {2 \cos (c+d x) \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}{3 \sqrt {b} \sqrt {a+b} d \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right )}-\frac {2 (a+b)^{3/4} \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right ) \sqrt {\frac {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}{(a+b) \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt [4]{a+b}}\right )|\frac {1}{2} \left (1+\frac {\sqrt {b}}{\sqrt {a+b}}\right )\right )}{3 b^{3/4} d \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}+\frac {\sqrt [4]{a+b} \left (a-2 b+2 \sqrt {b} \sqrt {a+b}\right ) \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right ) \sqrt {\frac {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}{(a+b) \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt [4]{a+b}}\right ),\frac {1}{2} \left (1+\frac {\sqrt {b}}{\sqrt {a+b}}\right )\right )}{6 b^{5/4} d \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 27.46 (sec) , antiderivative size = 2854, normalized size of antiderivative = 5.90 \[ \int \frac {\sin ^5(c+d x)}{\sqrt {a+b \sin ^4(c+d x)}} \, dx=\text {Result too large to show} \]

[In]

Integrate[Sin[c + d*x]^5/Sqrt[a + b*Sin[c + d*x]^4],x]

[Out]

-1/6*(Cos[c + d*x]*Sqrt[8*a + 3*b - 4*b*Cos[2*(c + d*x)] + b*Cos[4*(c + d*x)]])/(Sqrt[2]*b*d) + (2*Sqrt[2]*Sqr
t[a]*((Sqrt[2]*Sin[c + d*x])/Sqrt[8*a + 3*b - 4*b*Cos[2*(c + d*x)] + b*Cos[4*(c + d*x)]] - (2*Sqrt[2]*a*Sin[c
+ d*x])/(3*b*Sqrt[8*a + 3*b - 4*b*Cos[2*(c + d*x)] + b*Cos[4*(c + d*x)]]) - (Sqrt[2]*Sin[3*(c + d*x)])/(3*Sqrt
[8*a + 3*b - 4*b*Cos[2*(c + d*x)] + b*Cos[4*(c + d*x)]]))*Sqrt[((a + b)*(a + 2*a*Tan[c + d*x]^2 + (a + b)*Tan[
c + d*x]^4))/(a*b)]*(-2*(Sqrt[a] - I*Sqrt[b])*Sqrt[b]*EllipticE[ArcSin[Sqrt[1 + (I*Sqrt[a])/Sqrt[b] + (I*(a +
b)*Tan[c + d*x]^2)/(Sqrt[a]*Sqrt[b])]/Sqrt[2]], (2*Sqrt[a])/(Sqrt[a] - I*Sqrt[b])]*Sqrt[(1 - (I*Sqrt[a])/Sqrt[
b])*Sec[c + d*x]^2] + I*(a - 2*b)*EllipticF[ArcSin[Sqrt[1 + (I*Sqrt[a])/Sqrt[b] + (I*(a + b)*Tan[c + d*x]^2)/(
Sqrt[a]*Sqrt[b])]/Sqrt[2]], (2*Sqrt[a])/(Sqrt[a] - I*Sqrt[b])]*Sqrt[(1 - (I*Sqrt[a])/Sqrt[b])*Sec[c + d*x]^2]
+ 2*Sqrt[a]*Sqrt[b]*Sqrt[((a + b)*(a + 2*a*Tan[c + d*x]^2 + (a + b)*Tan[c + d*x]^4))/(a*b)]))/(3*Sqrt[b]*(a +
b)*d*Sqrt[8*a + 3*b - 4*b*Cos[2*(c + d*x)] + b*Cos[4*(c + d*x)]]*(Sec[c + d*x]^2)^(3/2)*((Sqrt[2]*(4*a*Sec[c +
 d*x]^2*Tan[c + d*x] + 4*(a + b)*Sec[c + d*x]^2*Tan[c + d*x]^3)*(-2*(Sqrt[a] - I*Sqrt[b])*Sqrt[b]*EllipticE[Ar
cSin[Sqrt[1 + (I*Sqrt[a])/Sqrt[b] + (I*(a + b)*Tan[c + d*x]^2)/(Sqrt[a]*Sqrt[b])]/Sqrt[2]], (2*Sqrt[a])/(Sqrt[
a] - I*Sqrt[b])]*Sqrt[(1 - (I*Sqrt[a])/Sqrt[b])*Sec[c + d*x]^2] + I*(a - 2*b)*EllipticF[ArcSin[Sqrt[1 + (I*Sqr
t[a])/Sqrt[b] + (I*(a + b)*Tan[c + d*x]^2)/(Sqrt[a]*Sqrt[b])]/Sqrt[2]], (2*Sqrt[a])/(Sqrt[a] - I*Sqrt[b])]*Sqr
t[(1 - (I*Sqrt[a])/Sqrt[b])*Sec[c + d*x]^2] + 2*Sqrt[a]*Sqrt[b]*Sqrt[((a + b)*(a + 2*a*Tan[c + d*x]^2 + (a + b
)*Tan[c + d*x]^4))/(a*b)]))/(3*Sqrt[a]*b^(3/2)*Sqrt[8*a + 3*b - 4*b*Cos[2*(c + d*x)] + b*Cos[4*(c + d*x)]]*(Se
c[c + d*x]^2)^(3/2)*Sqrt[((a + b)*(a + 2*a*Tan[c + d*x]^2 + (a + b)*Tan[c + d*x]^4))/(a*b)]) - (Sqrt[2]*Sqrt[a
]*(8*b*Sin[2*(c + d*x)] - 4*b*Sin[4*(c + d*x)])*Sqrt[((a + b)*(a + 2*a*Tan[c + d*x]^2 + (a + b)*Tan[c + d*x]^4
))/(a*b)]*(-2*(Sqrt[a] - I*Sqrt[b])*Sqrt[b]*EllipticE[ArcSin[Sqrt[1 + (I*Sqrt[a])/Sqrt[b] + (I*(a + b)*Tan[c +
 d*x]^2)/(Sqrt[a]*Sqrt[b])]/Sqrt[2]], (2*Sqrt[a])/(Sqrt[a] - I*Sqrt[b])]*Sqrt[(1 - (I*Sqrt[a])/Sqrt[b])*Sec[c
+ d*x]^2] + I*(a - 2*b)*EllipticF[ArcSin[Sqrt[1 + (I*Sqrt[a])/Sqrt[b] + (I*(a + b)*Tan[c + d*x]^2)/(Sqrt[a]*Sq
rt[b])]/Sqrt[2]], (2*Sqrt[a])/(Sqrt[a] - I*Sqrt[b])]*Sqrt[(1 - (I*Sqrt[a])/Sqrt[b])*Sec[c + d*x]^2] + 2*Sqrt[a
]*Sqrt[b]*Sqrt[((a + b)*(a + 2*a*Tan[c + d*x]^2 + (a + b)*Tan[c + d*x]^4))/(a*b)]))/(3*Sqrt[b]*(a + b)*(8*a +
3*b - 4*b*Cos[2*(c + d*x)] + b*Cos[4*(c + d*x)])^(3/2)*(Sec[c + d*x]^2)^(3/2)) - (2*Sqrt[2]*Sqrt[a]*Tan[c + d*
x]*Sqrt[((a + b)*(a + 2*a*Tan[c + d*x]^2 + (a + b)*Tan[c + d*x]^4))/(a*b)]*(-2*(Sqrt[a] - I*Sqrt[b])*Sqrt[b]*E
llipticE[ArcSin[Sqrt[1 + (I*Sqrt[a])/Sqrt[b] + (I*(a + b)*Tan[c + d*x]^2)/(Sqrt[a]*Sqrt[b])]/Sqrt[2]], (2*Sqrt
[a])/(Sqrt[a] - I*Sqrt[b])]*Sqrt[(1 - (I*Sqrt[a])/Sqrt[b])*Sec[c + d*x]^2] + I*(a - 2*b)*EllipticF[ArcSin[Sqrt
[1 + (I*Sqrt[a])/Sqrt[b] + (I*(a + b)*Tan[c + d*x]^2)/(Sqrt[a]*Sqrt[b])]/Sqrt[2]], (2*Sqrt[a])/(Sqrt[a] - I*Sq
rt[b])]*Sqrt[(1 - (I*Sqrt[a])/Sqrt[b])*Sec[c + d*x]^2] + 2*Sqrt[a]*Sqrt[b]*Sqrt[((a + b)*(a + 2*a*Tan[c + d*x]
^2 + (a + b)*Tan[c + d*x]^4))/(a*b)]))/(Sqrt[b]*(a + b)*Sqrt[8*a + 3*b - 4*b*Cos[2*(c + d*x)] + b*Cos[4*(c + d
*x)]]*(Sec[c + d*x]^2)^(3/2)) + (2*Sqrt[2]*Sqrt[a]*Sqrt[((a + b)*(a + 2*a*Tan[c + d*x]^2 + (a + b)*Tan[c + d*x
]^4))/(a*b)]*((-2*(1 - (I*Sqrt[a])/Sqrt[b])*(Sqrt[a] - I*Sqrt[b])*Sqrt[b]*EllipticE[ArcSin[Sqrt[1 + (I*Sqrt[a]
)/Sqrt[b] + (I*(a + b)*Tan[c + d*x]^2)/(Sqrt[a]*Sqrt[b])]/Sqrt[2]], (2*Sqrt[a])/(Sqrt[a] - I*Sqrt[b])]*Sec[c +
 d*x]^2*Tan[c + d*x])/Sqrt[(1 - (I*Sqrt[a])/Sqrt[b])*Sec[c + d*x]^2] + (I*(1 - (I*Sqrt[a])/Sqrt[b])*(a - 2*b)*
EllipticF[ArcSin[Sqrt[1 + (I*Sqrt[a])/Sqrt[b] + (I*(a + b)*Tan[c + d*x]^2)/(Sqrt[a]*Sqrt[b])]/Sqrt[2]], (2*Sqr
t[a])/(Sqrt[a] - I*Sqrt[b])]*Sec[c + d*x]^2*Tan[c + d*x])/Sqrt[(1 - (I*Sqrt[a])/Sqrt[b])*Sec[c + d*x]^2] + ((a
 + b)*(4*a*Sec[c + d*x]^2*Tan[c + d*x] + 4*(a + b)*Sec[c + d*x]^2*Tan[c + d*x]^3))/(Sqrt[a]*Sqrt[b]*Sqrt[((a +
 b)*(a + 2*a*Tan[c + d*x]^2 + (a + b)*Tan[c + d*x]^4))/(a*b)]) - ((a - 2*b)*(a + b)*Sec[c + d*x]^2*Sqrt[(1 - (
I*Sqrt[a])/Sqrt[b])*Sec[c + d*x]^2]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a]*Sqrt[b]*Sqrt[1 + (I*Sqrt[a])/Sqrt[b] + (I*(
a + b)*Tan[c + d*x]^2)/(Sqrt[a]*Sqrt[b])]*Sqrt[1 + (-1 - (I*Sqrt[a])/Sqrt[b] - (I*(a + b)*Tan[c + d*x]^2)/(Sqr
t[a]*Sqrt[b]))/2]*Sqrt[1 - (Sqrt[a]*(1 + (I*Sqrt[a])/Sqrt[b] + (I*(a + b)*Tan[c + d*x]^2)/(Sqrt[a]*Sqrt[b])))/
(Sqrt[a] - I*Sqrt[b])]) - (I*Sqrt[2]*(Sqrt[a] - I*Sqrt[b])*(a + b)*Sec[c + d*x]^2*Sqrt[(1 - (I*Sqrt[a])/Sqrt[b
])*Sec[c + d*x]^2]*Tan[c + d*x]*Sqrt[1 - (Sqrt[a]*(1 + (I*Sqrt[a])/Sqrt[b] + (I*(a + b)*Tan[c + d*x]^2)/(Sqrt[
a]*Sqrt[b])))/(Sqrt[a] - I*Sqrt[b])])/(Sqrt[a]*Sqrt[1 + (I*Sqrt[a])/Sqrt[b] + (I*(a + b)*Tan[c + d*x]^2)/(Sqrt
[a]*Sqrt[b])]*Sqrt[1 + (-1 - (I*Sqrt[a])/Sqrt[b] - (I*(a + b)*Tan[c + d*x]^2)/(Sqrt[a]*Sqrt[b]))/2])))/(3*Sqrt
[b]*(a + b)*Sqrt[8*a + 3*b - 4*b*Cos[2*(c + d*x)] + b*Cos[4*(c + d*x)]]*(Sec[c + d*x]^2)^(3/2))))

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 3.87 (sec) , antiderivative size = 837, normalized size of antiderivative = 1.73

method result size
default \(-\frac {\sqrt {1-\frac {\left (i \sqrt {a}\, \sqrt {b}+b \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{a +b}}\, \sqrt {1+\frac {\left (i \sqrt {a}\, \sqrt {b}-b \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{a +b}}\, F\left (\cos \left (d x +c \right ) \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}, \sqrt {-1-\frac {2 \left (i \sqrt {a}\, \sqrt {b}-b \right )}{a +b}}\right )}{d \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}\, \sqrt {a +b -2 b \left (\cos ^{2}\left (d x +c \right )\right )+b \left (\cos ^{4}\left (d x +c \right )\right )}}-\frac {4 \left (a +b \right ) \sqrt {1-\frac {\left (i \sqrt {a}\, \sqrt {b}+b \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{a +b}}\, \sqrt {1+\frac {\left (i \sqrt {a}\, \sqrt {b}-b \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{a +b}}\, \left (F\left (\cos \left (d x +c \right ) \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}, \sqrt {-1-\frac {2 \left (i \sqrt {a}\, \sqrt {b}-b \right )}{a +b}}\right )-E\left (\cos \left (d x +c \right ) \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}, \sqrt {-1-\frac {2 \left (i \sqrt {a}\, \sqrt {b}-b \right )}{a +b}}\right )\right )}{d \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}\, \sqrt {a +b -2 b \left (\cos ^{2}\left (d x +c \right )\right )+b \left (\cos ^{4}\left (d x +c \right )\right )}\, \left (-2 b +2 i \sqrt {a}\, \sqrt {b}\right )}-\frac {4 \left (\frac {\cos \left (d x +c \right ) \sqrt {a +b -2 b \left (\cos ^{2}\left (d x +c \right )\right )+b \left (\cos ^{4}\left (d x +c \right )\right )}}{12 b}-\frac {\left (a +b \right ) \sqrt {1-\frac {\left (i \sqrt {a}\, \sqrt {b}+b \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{a +b}}\, \sqrt {1+\frac {\left (i \sqrt {a}\, \sqrt {b}-b \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{a +b}}\, F\left (\cos \left (d x +c \right ) \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}, \sqrt {-1-\frac {2 \left (i \sqrt {a}\, \sqrt {b}-b \right )}{a +b}}\right )}{12 b \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}\, \sqrt {a +b -2 b \left (\cos ^{2}\left (d x +c \right )\right )+b \left (\cos ^{4}\left (d x +c \right )\right )}}-\frac {2 \left (a +b \right ) \sqrt {1-\frac {\left (i \sqrt {a}\, \sqrt {b}+b \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{a +b}}\, \sqrt {1+\frac {\left (i \sqrt {a}\, \sqrt {b}-b \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{a +b}}\, \left (F\left (\cos \left (d x +c \right ) \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}, \sqrt {-1-\frac {2 \left (i \sqrt {a}\, \sqrt {b}-b \right )}{a +b}}\right )-E\left (\cos \left (d x +c \right ) \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}, \sqrt {-1-\frac {2 \left (i \sqrt {a}\, \sqrt {b}-b \right )}{a +b}}\right )\right )}{3 \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}\, \sqrt {a +b -2 b \left (\cos ^{2}\left (d x +c \right )\right )+b \left (\cos ^{4}\left (d x +c \right )\right )}\, \left (-2 b +2 i \sqrt {a}\, \sqrt {b}\right )}\right )}{d}\) \(837\)

[In]

int(sin(d*x+c)^5/(a+b*sin(d*x+c)^4)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/d/((I*a^(1/2)*b^(1/2)+b)/(a+b))^(1/2)*(1-(I*a^(1/2)*b^(1/2)+b)/(a+b)*cos(d*x+c)^2)^(1/2)*(1+(I*a^(1/2)*b^(1
/2)-b)/(a+b)*cos(d*x+c)^2)^(1/2)/(a+b-2*b*cos(d*x+c)^2+b*cos(d*x+c)^4)^(1/2)*EllipticF(cos(d*x+c)*((I*a^(1/2)*
b^(1/2)+b)/(a+b))^(1/2),(-1-2*(I*a^(1/2)*b^(1/2)-b)/(a+b))^(1/2))-4/d*(a+b)/((I*a^(1/2)*b^(1/2)+b)/(a+b))^(1/2
)*(1-(I*a^(1/2)*b^(1/2)+b)/(a+b)*cos(d*x+c)^2)^(1/2)*(1+(I*a^(1/2)*b^(1/2)-b)/(a+b)*cos(d*x+c)^2)^(1/2)/(a+b-2
*b*cos(d*x+c)^2+b*cos(d*x+c)^4)^(1/2)/(-2*b+2*I*a^(1/2)*b^(1/2))*(EllipticF(cos(d*x+c)*((I*a^(1/2)*b^(1/2)+b)/
(a+b))^(1/2),(-1-2*(I*a^(1/2)*b^(1/2)-b)/(a+b))^(1/2))-EllipticE(cos(d*x+c)*((I*a^(1/2)*b^(1/2)+b)/(a+b))^(1/2
),(-1-2*(I*a^(1/2)*b^(1/2)-b)/(a+b))^(1/2)))-4/d*(1/12/b*cos(d*x+c)*(a+b-2*b*cos(d*x+c)^2+b*cos(d*x+c)^4)^(1/2
)-1/12*(a+b)/b/((I*a^(1/2)*b^(1/2)+b)/(a+b))^(1/2)*(1-(I*a^(1/2)*b^(1/2)+b)/(a+b)*cos(d*x+c)^2)^(1/2)*(1+(I*a^
(1/2)*b^(1/2)-b)/(a+b)*cos(d*x+c)^2)^(1/2)/(a+b-2*b*cos(d*x+c)^2+b*cos(d*x+c)^4)^(1/2)*EllipticF(cos(d*x+c)*((
I*a^(1/2)*b^(1/2)+b)/(a+b))^(1/2),(-1-2*(I*a^(1/2)*b^(1/2)-b)/(a+b))^(1/2))-2/3*(a+b)/((I*a^(1/2)*b^(1/2)+b)/(
a+b))^(1/2)*(1-(I*a^(1/2)*b^(1/2)+b)/(a+b)*cos(d*x+c)^2)^(1/2)*(1+(I*a^(1/2)*b^(1/2)-b)/(a+b)*cos(d*x+c)^2)^(1
/2)/(a+b-2*b*cos(d*x+c)^2+b*cos(d*x+c)^4)^(1/2)/(-2*b+2*I*a^(1/2)*b^(1/2))*(EllipticF(cos(d*x+c)*((I*a^(1/2)*b
^(1/2)+b)/(a+b))^(1/2),(-1-2*(I*a^(1/2)*b^(1/2)-b)/(a+b))^(1/2))-EllipticE(cos(d*x+c)*((I*a^(1/2)*b^(1/2)+b)/(
a+b))^(1/2),(-1-2*(I*a^(1/2)*b^(1/2)-b)/(a+b))^(1/2))))

Fricas [F]

\[ \int \frac {\sin ^5(c+d x)}{\sqrt {a+b \sin ^4(c+d x)}} \, dx=\int { \frac {\sin \left (d x + c\right )^{5}}{\sqrt {b \sin \left (d x + c\right )^{4} + a}} \,d x } \]

[In]

integrate(sin(d*x+c)^5/(a+b*sin(d*x+c)^4)^(1/2),x, algorithm="fricas")

[Out]

integral((cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*sin(d*x + c)/sqrt(b*cos(d*x + c)^4 - 2*b*cos(d*x + c)^2 + a +
 b), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^5(c+d x)}{\sqrt {a+b \sin ^4(c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate(sin(d*x+c)**5/(a+b*sin(d*x+c)**4)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sin ^5(c+d x)}{\sqrt {a+b \sin ^4(c+d x)}} \, dx=\int { \frac {\sin \left (d x + c\right )^{5}}{\sqrt {b \sin \left (d x + c\right )^{4} + a}} \,d x } \]

[In]

integrate(sin(d*x+c)^5/(a+b*sin(d*x+c)^4)^(1/2),x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)^5/sqrt(b*sin(d*x + c)^4 + a), x)

Giac [F]

\[ \int \frac {\sin ^5(c+d x)}{\sqrt {a+b \sin ^4(c+d x)}} \, dx=\int { \frac {\sin \left (d x + c\right )^{5}}{\sqrt {b \sin \left (d x + c\right )^{4} + a}} \,d x } \]

[In]

integrate(sin(d*x+c)^5/(a+b*sin(d*x+c)^4)^(1/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^5(c+d x)}{\sqrt {a+b \sin ^4(c+d x)}} \, dx=\int \frac {{\sin \left (c+d\,x\right )}^5}{\sqrt {b\,{\sin \left (c+d\,x\right )}^4+a}} \,d x \]

[In]

int(sin(c + d*x)^5/(a + b*sin(c + d*x)^4)^(1/2),x)

[Out]

int(sin(c + d*x)^5/(a + b*sin(c + d*x)^4)^(1/2), x)